Methylation-independent silencing of the tumor suppressor INK4b (p15) by CBFbeta-SMMHC in acute myelogenous leukemia with inv(16).

نویسندگان

  • Jan Markus
  • Matthew T Garin
  • Juraj Bies
  • Naomi Galili
  • Azra Raza
  • Michael J Thirman
  • Michelle M Le Beau
  • Janet D Rowley
  • P Paul Liu
  • Linda Wolff
چکیده

The tumor suppressor gene INK4b (p15) is silenced by CpG island hypermethylation in most acute myelogenous leukemias (AML), and this epigenetic phenomenon can be reversed by treatment with hypomethylating agents. Thus far, it was not investigated whether INK4b is hypermethylated in all cytogenetic subtypes of AML. A comparison of levels of INK4b methylation in AML with the three most common cytogenetic alterations, inv(16), t(8;21), and t(15;17), revealed a strikingly low level of methylation in all leukemias with inv(16) compared with the other types. Surprisingly, the expression level of INK4b in inv(16)+ AML samples was low and comparable with that of the other subtypes. An investigation into an alternative mechanism of INK4b silencing determined that the loss of INK4b expression was caused by inv(16)-encoded core binding factor beta-smooth muscle myosin heavy chain (CBFbeta-SMMHC). The silencing was manifested in an inability to activate the normal expression of INK4b RNA as shown in vitamin D3-treated U937 cells expressing CBFbeta-SMMHC. CBFbeta-SMMHC was shown to displace RUNX1 from a newly determined CBF site in the promoter of INK4b. Importantly, this study (a) establishes that the gene encoding the tumor suppressor p15(INK4b) is a target of CBFbeta-SMMHC, a finding relevant to the leukemogenesis process, and (b) indicates that, in patients with inv(16)-containing AML, reexpression from the INK4b locus in the leukemia would not be predicted to occur using hypomethylating drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylation-Independent Silencing of the Tumor Suppressor

The tumor suppressor gene INK4b (p15) is silenced by CpG island hypermethylation in most acute myelogenous leukemias (AML), and this epigenetic phenomenon can be reversed by treatment with hypomethylating agents. Thus far, it was not investigated whether INK4b is hypermethylated in all cytogenetic subtypes of AML. A comparison of levels of INK4b methylation in AML with the three most common cyt...

متن کامل

FLT3-ITD cooperates with inv(16) to promote progression to acute myeloid leukemia.

The inversion of chromosome 16 in the inv(16)(p13q22) is one of the most frequent cytogenetic abnormalities observed in acute myeloid leukemia (AML). The inv(16) fuses the core binding factor (CBF) beta subunit with the coiled-coil rod domain of smooth muscle myosin heavy chain (SMMHC). Expression of CBFbeta-SMMHC in mice does not promote AML in the absence of secondary mutations. Patient sampl...

متن کامل

DNA methylation of tumor suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukemia.

Epigenetic changes play an important role in leukemia pathogenesis. DNA methylation is among the most common alterations in leukemia. The potential role of DNA methylation as a biomarker in leukemia is unknown. In addition, the lack of molecular markers precludes minimal residual disease (MRD) estimation for most patients with hematologic malignancies. We analyzed the potential of aberrant DNA ...

متن کامل

Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability.

The t(16:16) and inv(16) are associated with FAB M4Eo myeloid leukemias and result in fusion of the CBFB gene to the MYH11 gene (encoding smooth muscle myosin heavy chain [SMMHC]). Knockout of CBFbeta causes embryonic lethality due to lack of definitive hematopoiesis. Although knock-in of CBFB-MYH11 is not sufficient to cause disease, expression increases the incidence of leukemia when combined...

متن کامل

Clinicopathological significance and potential drug target of p15INK4B in multiple myeloma

Multiple myeloma (MM) is a clonal malignancy characterized by the proliferation of malignant plasma cells in the bone marrow and the production of monoclonal immunoglobulin. In addition to genetic changes, gene hypermethylation is an alternative mechanism of tumor suppressor gene inactivation in MM. The cyclin-dependent kinase inhibitor 1 (CDKN2B or p15(INK4B) ) gene lies adjacent to the tumor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 67 3  شماره 

صفحات  -

تاریخ انتشار 2007